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Our aim here is to give a brief account of some of the essential features of
the construction of the Nygaard filtration as discussed in [1]. We also explain
its application to the proof of Katz’s conjecture, following Nygaard’s method
in [4], but adapted to the language of [1].

We begin with a general construction, going back to Mazur’s original
article [3]. Let p be a fixed prime number.

Definition 1 Let Φ:M ′ → M be an injective homomorphism of p-torsion
free complexes of abelian sheaves on a topological space X. Let M := M/pM ,
and define, for i ≥ 0,

N iM ′ := Φ−1(piM)
NiM := Im(p−iΦ:N iM ′ →M)
N iM

′
:= Im(N iM ′ →M ′/pM ′)

NiM := Im(NiM →M/pM)

The verification of the following proposition is immediate.

Proposition 2 With the definitions above, N · is a descending filtration of
M ′ and N· is an ascending filtration of M . Furthermore

pN i−1M ′ = N iM ′ ∩ pM ′

pNi+1M = NiM ∩ pM

The map p−iΦ induces isomorphisms of pairs

(N iM ′, N i+1M ′) - (Ni, pNi+1)

(N iM ′, pN i−1M ′) - (Ni, Ni−1),
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and hence isomorphisms:

GriN M
′ - NiM

N iM
′ - GrNi M

N iM ′/(N i+1M ′ + pN i−1M ′) - GriN M
′

NiM/(Ni−1M + pNi1M) - GrNi M

Example 3 Let W be the Witt ring of a perfect field k. Following Mazur,
let us define a “span” to be an injective homomorphism Φ:M ′ → M of
finitely generated W -modules of the same rank. For example, let i be a
natural number and let Φ:W →W denote multiplication by pi. Then N ·M ′

(resp. N·M) is the unique filtration on k such that Gri k (resp. Gri k) is
nonzero. It is standard fact that every span is in fact a direct sum of spans
of this form. Thus a span is determined up to isomorphism by the “abstract
Hodge numbers” hi(Φ) := dimk GriN M

′
= dimk GrNi M .

Now suppose that (M ·, d, F ) is a saturated Dieudonné complex and let

Φ: (M ·, d)→ (M ·, d)

be the corresponding morphism of complexes. We assume here that Mn = 0
for n < 0, so Φn = pnF . Then it is easy to describe the filtrations N · and
N· explicitly.

Proposition 4 Let (M ·, d, F ) be a saturated Dieudonné complex and let N ·
and N· be the filtrations on M · defined by Φ as in Definition 1. Then

N iM = pi−1VM0 → pi−2VM1 → · · · → VM i−1 →M i →M i+1 · · ·

NiM = M0 → M1 → · · · → M i−1 → FM i → pFM i+1 → · · ·

Furthermore, the inverse of the isomorphism p−iΦ:N iM ′ → NiM is given
by pi−n−1V in degree n.

Proof: An element x of Mn lies in N iMn if and only if pnFx = piy for
some y ∈Mn Thus N iMn = Mn when i ≤ n, and when n < i, if and only if
Fx = pi−n−1py = pi−n−1FV y, that is, if and only if x = pi−n−1V y for some
y. Furthermore, p−iΦpi−n−1V y = pn−iFpi−n−1V y = y for every y ∈Mn, so
NiM

n = Mn when n < i, and if i ≤ n, then p−iΦN iMn = pn−iFMn.
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The following result corresponds to Nygaard’s [4, Theorem 1.5]. The first
statement occurs in [1, Proposition 8.2.1], but not the second. (Actually
Nygaards’ theorem is more general, and applies to powers of Φ as well as to
Φ.)

Theorem 5 There are natural quasi-isomorphisms:

N iM
·

= · · · 0 - VM i−1/pM i−1 - M
i - M

i+1 · · ·

β≥iW1M
· = · · · 0

?
- 0

?
- W1M

i
?

- W1M
i+1

?

and

NiM
·

= M
0 - · · · M

i−1 - FM i/pM i - 0 · · ·

τ≤iW1M
· = W1M

0
?

- · · · W1M
i−1

?
- Zi(W1M ·)

?
- 0 · · ·

Proof: Since N iM = N iM/(N iM ∩ pM) = N iM/pN i−1M , the descrip-

tion of N iM
·

shown follows from Proposition 4, and similarly for the descrip-
tion of NiM . Now recall from [1, Corollary 2.7.2] that the natural surjection

π:M
· → W1M

· is a quasi-isomorphism, i.e., its kernel K· is acyclic. We
claim that the same is true for the surjection π′:N iM → β≥iW1M

·, with
kernel K ′. First we check degree i − 1, where we need to show that the

map VM
i−1 → M

i
is injective. Suppose that x ∈ M i−1 and dV x = py

with y ∈ M i. Then dx = FdV x = Fpy = pFy, and since M · is saturated,
it follows that x = Fx′ for some x′ ∈ M i−1. But then V x = px′ so V x

maps to zero in M
i−1

. Now let us check that the map is an isomorphism in
degrees j ≥ i. From the exact sequence 0 → K ′· → N iM

· → W1M
· → 0

we see that it is enough to check that Hj(K ′·) for j ≥ i. Since K· is
acyclic, Hn(K ′·) ∼= Hn−1(K·/K ′·) for all n, so we just need to show that
Hj(K·/K ′·) = 0 for j ≥ i−1. The complex K·/K ′· vanishes in degrees ≥ i,
so it suffices to check degree i − 1. Recall that Ki−1 = VM

i−1
+ dVM

i−2

and K ′i−1 = VM
i−1

. Thus the boundary map Ki−2/K ′i−2 → Ki−1/K ′i−1

is surjective and hence there is no cohomology in degree i−1. This completes
the proof that the map N iM

· → β≥iW1M
· is a quasi-isomorphism
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For the second diagram, recall that if x ∈ M i and dx ∈ pM i+1, then

x ∈ FM i. Thus FM
i

identifies with Zi(M
·
) and N·M

·
with τ≤iM

·
. Since

M
· → W1M

· is a quasi-isomorphism, the same holds after applying τ≤i and
the result follows.

The following result shows that, under suitable hypotheses, formation of
the filtrations N · and N· commutes with passage to hypercohomology.

Theorem 6 Let (M ·, F, d) be a strict Dieudonné complex on a topological
space (or topos) X, let H· := H·(M ·, d) and suppose that the following
hypotheses are satisfied.

1. The groups in H· are p-torsion free.

2. The two spectral sequences of hypercohomology associated to the com-
plex W1M

· degenerate, at E1 and at E2 respectively. That is:

(a) For all i, the map H·(X,β≥iW1M
·) → H·(X,W1M

·) are injec-
tive.

(b) For all i, the maps H·(X, τ≤iW1M
·)→ H·(X,W1M

·) are injec-
tive.

Let N iH· and NiH
· be the submodules of H· defined by the map H·(Φ):H· →

H· as in Definition 1. Then the following conclusions hold.

1. For all i, the natural maps

H·(M ·)/piH·(M ·)→ H·(M ·/piM ·)

are isomorphisms. In particular, the natural maps

H
·

:= H·/pH· → H·(M ·)→ H(W1M
·)

are isomorphisms.

2. The natural maps

H·(N iM ·)→ N iH·(M ·) and H·(NiM
·)→ NiH

·(M ·)

are isomorphisms.

3. The natural maps

H·(N iM ·)→ H·(β≥iW1M
·) and H·(NiM

·)→ H·(τ≤iW1M
·)

are surjective.

4



Proof: Conclusion (1) follows from the long exact cohomology sequence
associated to the short exact sequence

0→M · pi- M · →M ·/piM · → 0,

hypothesis (1), and the fact that M
· → W1M

· is a quasi-isomorphism.

Lemma 7 For every i, the map H·(N iM ·)→ H·(M ·) is injective.

Proof: We use induction on i, the case i = 0 being trivial. Thanks to
Proposition 2, we have an exact sequence

0→ N i−1M · [p]- N iM · → N iM
· → 0 (1)

and hence a commutative diagram in which the rows are exact:

H·(N i−1M ·)
[p]- H·(N iM ·) - H·(N iM

·
)

H·(M ·)

ai−1

?
p- H·(M ·)

ai

?
- H·(M ·).

bi

?

The map ai−1 is injective by the induction hypothesis, the map p in the lower
left is injective because H·(M) is torsion free, and by Theorem 5 the map bi
identifies with the map H·(β≥iW1M

·) → H·(W1M
·) which is injective by

hypothesis (2a). It follows that ai is injective.

Since N iM · is the kernel of the map

M · Φ- M · →M ·/piM ·,

we find a map
φi:M

·/N iM · →M ·/piM ·

Lemma 8 For every i, the map H·(M ·/N iM ·) → H·(M ·/piM ·) induced
by φi is injective.

Proof: We argue by induction on i, the case i = 0 being trivial. We have
a commutative diagram:

0 - GriN M
· - M ·/N i+1M · - M ·/N i - 0

0 - M ·/pM ·

ψi

?
[pi]- M ·/pi+1M ·

φi+1

?
- M ·/piM ·

φi

?
- 0
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with exact rows. Furthermore, the map ψi factors as a composition

GriN M
· αi- NiM

· →M
·

where the first arrow is the isomorphism from Proposition 2 and the second
is the evident inclusion. This yields the diagram:

H·(GriN M
·) - H·(M ·/N i+1M ·) - H·(M ·/N iM ·)

H·(M ·)

ψi

?
[pi]- H·(M ·/pi+1M ·)

φi+1

?
- H·(M ·/piM ·).

φi

?

The rows in the diagram are exact, the map labeled [pi] is injective by
hypothesis (1), and the map φi is injective by the induction hypothesis.
The map ψi factors as a composite

H·(GriN M
·) H·(αi)- H·(NiM

·
)

βi- H·(M ·);

The first map is an isomorphism since αi is, and by Theorem 5, βi identi-
fies with the map H·(X, τ≤iW1M

·)→ H·(X,W1M
·), which is injective by

hypothesis (2b). It follows that ψi is injective and then that φi+1 is injective.

Lemma 9 The map H·(N iM ·)→ H·(N iM
·
) is surjective.

Proof: The exact sequence (1) yields a long exact sequence

H·(N iM ·)→ H·(N iM
·
)→ H·+1(N i−1M ·) [p]- H·+1(N iM ·).

Thus it suffices to show that the map [p] is injective. This follows from the
commutative diagram

H·(N i−1M ·)
[p]- H·(N iM ·)

H·(M ·)
?

p- H·(M ·),
?

the torsion freeness of H·(M ·), and Lemma 7.
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Now to prove the theorem, recall that N iH· is by definition the kernel of
the composition

ci:H
·(M ·) H·(Φ)- H·(M ·) - H·(M ·)/piH·(M ·).

The top row of the following commutative diagram is exact:

H·(N iM ·)
ai - H·(M ·) - H·(M ·/N iM ·)

H·(M ·)/piH·(M ·)

ci

? ∼=- H·(M ·/piM ·).

φi

?

As we have seen, ai and φi are injective, and it follows that H·(N iM ·)
identifies with the kernel of ci.

Let us sketch how Theorem 6 implies Katz’s conjecture. Recall that if
X/k is a smooth over a perfect field k of characteristic p, the classical de
Rham Witt complex WΩ·X identifies with the strict de Rham Witt com-
plex WΩ·X constructed in [1] and that its hypercohomology identifies with
crystalline cohomology [2].

Theorem 10 Let X/k be a smooth proper scheme over a perfect field k
of characteristic p > 0 and let H·dRW (X) := H·(X,WΩ·X). Assume that
H·dRW (X/W ) is torsion free and that the Hodge spectral sequence of of X/k
degenerates at E1. Let Φ denote the endomorphism of H·dRW (X) induced
by FX and let N · and N· be the corresponding filtrations of H·dRW (X) as in
Definition 1. Then

1. The natural map H
·

:= H·dRW (X)/pH·dRW (X) → H·dR(X/k) is an
isomorphism.

2. The filtration induced by N · on HdR(X/k) is the Hodge filtration.

3. The filtration induced by N· on HdR(X/k) is the conjugate filtration.

4. The dimension of GriN H
n

is equal to the dimension of Hn−i(X,Ωi
X/k).

5. The Newton polygon of the action of Φ on H·dRW (X) lies on or above
the Hodge polygon of X/k in degree n.
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Proof: Statements (1)–(4) follow from Theorem 6 appied to the saturated
de Rham Witt complex WΩ·X and the isomorphism Ω·X/k ∼= W1Ω·X of [1,

Proposition 4.3.2]. Statement (5) follow, since the Newton polygon of an
F-crystal always lies on or above the polygon formed from the numbers
dim GriN H [3].
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